메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박동진 (공주대학교) 최기석 (한국과학기술정보연구원) 이명선 (한국과학기술정보연구원) 이상태 (한국표준과학연구원)
저널정보
한국콘텐츠학회 한국콘텐츠학회논문지 한국콘텐츠학회논문지 제9권 제11호
발행연도
2009.11
수록면
54 - 62 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
국가적으로 그리고 각 연구기관에서는 투자의 효율성을 기하기 위하여 연구사업 선정과정에서 데이터베이스로부터 중복과제 혹은 유사과제를 검색하는 과정을 거친다. 최근 부얼리언 기반의 키워드 매칭 검색알고리즘의 발전 및 이를 채택한 검색엔진의 개발로 인하여 검색의 정확도가 많이 향상되었지만, 사용자가 입력하는 제한된 수의 키워드들에 의한 검색은 유사과제 파악과 우선순위의 결정에 어려움이 있다. 본 연구에서는 제안된 과제의 문서를 분석하여 다수의 색인어들을 추출하고, 이들에게 가중치를 부여한 후, 기존의 문서들과 비교하여 유사과제를 찾아내는 문서단위의 검색 알고리즘을 제안한다. 구체적으로 벡터공간검색(Vector-Space Retrieval)모델의 한 종류인 TFIDF(Term Frequency Inverse document Frequency)를 기본 구조로 채택한다. 또한 개발되는 알고리즘에는 연구과제 제안문서의 구조에 적합한 속성별 가중치(feature weighting)를 반영하고 검색속도의 향상을 위하여 K-최근접 문서(KNN: K-Nearest Neighbors) 기법도 반영한 알고리즘을 제시한다. 실험을 위하여 실제 연구제안 문서와 구조가 동일한 기존의 보고서를 사용하였는데, KISTI에서 운영하는 과학기술정보포털서비스인 NDSL에서 이미 분류해 놓은 4분야의 1,000 개 연구 보고서 문서를 발췌하여 실험을 하였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 이론적 배경
Ⅲ. 실험환경 및 알고리즘의 개발
Ⅳ. 실험 및 알고리즘의 평가
Ⅴ. 결론 및 한계
참고문헌
저자소개

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-004-019118993