메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김영수 (배재대학교) 이병엽 (배재대학교)
저널정보
한국콘텐츠학회 한국콘텐츠학회논문지 한국콘텐츠학회논문지 제17권 제11호
발행연도
2017.11
수록면
600 - 608 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 인터넷의 급격한 확장에 따른 정보의 양이 기하급수적으로 증가하고 있다. 그러나 실제 사용자에게 필요한 정보는 극히 일부분으로 사용자가 원하는 정보를 찾는데 까지는 부가적인 시간과 노력이 요구된다. 따라서 검색어로 검색된 문서에 대한 유사도 평가를 통한 계층적 유사 정보와 검색 우선순위에 대한 정보를 제공할 필요성이 있다. 이를 위해서 검색어를 구성하고 있는 키워드의 동시 발생 빈도를 고려한 검색 문서에 대한 유사도를 기반으로 문서 클러스터를 구성하고 SVM을 적용한 빅 데이터 기반 계층적 유형 분류모델을 제안한다. 계층적 분류방법과 SVM 분류기의 결합은 문서의 계층이 기하급수적으로 늘어나는 웹문서의 경우에 높은 성능을 얻을 수 있다. 제안된 모델은 정확하고 신속한 검색을 제공하는 정보검색시스템의 응용 모델로 활용될 수 있다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 맵 리듀스 기반의 클러스터링 모델
Ⅲ. 계층적 클래스 기반 다중 SVM 분류 모델
Ⅳ. 계층적 문서 유형 분류를 위한 클러스터링 기반 다중 SVM 모델
Ⅴ. 결론
참고문헌

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0