메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김호준 (한동대학교)
저널정보
한국지능정보시스템학회 지능정보연구 지능정보연구 제16권 제2호
발행연도
2010.6
수록면
95 - 108 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 연구에서는 동영상으로부터 동적 수신호 패턴을 효과적으로 인식하기 위한 방법론으로서 복합형 신경망 모델을 제안한다. 제안된 모델은 특징추출 모듈과 패턴분류 모듈로 구성되는데, 이들 각각을 위하여 수정된 구조의 CNN 모델과, WFMM 모델을 도입한다. 또한 목표물의 움직임 정보에 기초한 시공간적 템플릿 구조의 데이터표현을 소개한다. 본 논문에서는 우선 수신호 패턴 데이터에서 특징점의 시간적 변이 및 공간적 변이에 의한 영향을 보완하기 위하여 3차원 수용영역 구조로 확장된 CNN 모델을 제시한다. 이어서 패턴분류 단계를 위하여 가중치를 갖는 구조의 FMM 신경망 모델을 소개하고, 신경망의 구조와 동작특성에 관해 기술한다. 또한 제안된 모델이 기존의 FMM 신경망에서 중첩 하이퍼박스의 축소과정에서 발생하는 학습효과의 왜곡현상을 개선할 수 있음을 보인다. 응용으로 가전제품 원격제어 문제를 전제하여 간략화된 수신호패턴 인식 문제에 적용한 실험결과로부터 제안된 이론의 타당성을 고찰한다.

목차

1. 서론
2. 입력 영상의 표현
3. CNN 모델을 사용한 특징추출
4. WFMM 모델 기반의 패턴 분류
7. 분석 및 실험
8. 결론
참고문헌
Abstract
저자소개

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2012-003-003591120