메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 연구에서는 FMM 신경망을 이용한 패턴 분류 문제에서 학습 패턴에 포함되는 특징의 발생 빈도와 특징값의 분포를 고려하는 네트워크 구조와 학습 방법론을 소개한다. 이를 위하여 하이퍼박스 소속함수의 산출 과정에 세부특징에 대한 가중치 개념이 적용되는 새로운 활성화 특성을 제안한다. 또한 하이퍼박스의 특징 범위와 빈도 및 특징값의 분포를 유지하고 새롭게 ... 전체 초록 보기

목차

요약

1. 서론

2. 퍼지 최대-최소 신경망

3. 특징의 분포와 가중치를 고려한 FMM 신경망 모델

4. 실험 결과 및 고찰

5. 결론

6. 참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017767049