메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김명종 (부산대학교)
저널정보
한국지능정보시스템학회 지능정보연구 지능정보연구 제16권 제4호
발행연도
2010.12
수록면
99 - 112 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
앙상블 학습은 분류 및 예측 알고리즘의 성과개선을 위하여 제안된 기계학습 기법이다. 그러나 앙상블 학습은 기저 분류자의 다양성이 부족한 경우 다중공선성 문제로 인하여 성과개선 효과가 미약하고 심지어는 성과가 악화될 수 있다는 문제점이 제기되었다. 본 연구에서는 기저 분류자의 다양성을 확보하고 앙상블 학습의 성과개선 효과를 제고하기 위하여 유전자 알고리즘 기반의 범위 최적화 기법을 제안하고자 한다. 본 연구에서 제안된 최적화 기법을 기업부실예측 인공신경망 앙상블에 적용한 결과 기저 분류자의 다양성이 확보되고 인공신경망 앙상블의 성과가 유의적으로 개선되었음을 보여주었다.

목차

1. 서론
2. 앙상블 학습
3. 유전자 알고리즘 기반의 범위 최적화
4. 자료 분석 및 가설검증연구 설계
5. 연구 결과
6. 결론 및 향후 연구 방향
참고문헌
Abstract
저자소개

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2012-030-004167905