메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 논문에서는 지역 전문가를 이용한 새로운 앙상블 방법을 제시하고자 한다. 이 앙상블 방법에서는 학습데이타를 분할하여 속성 공간의 서로 다른 지역을 이용하여 전문가를 학습시킨다. 새로운 데이타를 분류할 때에는 그 데이타가 속한 지역을 담당하는 전문가들로 가중치 투표를 한다. UCI 기계 학습 데이타 저장소에 있는 10개의 데이타를 이용하여 단일 분류기, Bagging, Adaboost와 정확도를 비교하였다. 학습 알고리즘으로는 SVM, Naive Bayes, C4.5를 사용하였다. 그 결과 지역 전문가의 앙상블 학습 방법이 C4.5를 학습 알고리즘으로 사용한 Bagging, Adaboost와는 비슷한 성능을 보였으며 나머지 분류기보다는 좋은 성능을 보였다.

목차

요약
Abstract
1. 서론
2. 좋은 앙상블의 조건
3. 지역 전문가의 앙상블 학습
4. 실험
5. 결론 및 향후 과제
참고문헌

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0