메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
홍준혁 (계명대학교) 고병철 (계명대학교) 남재열 (계명대학교)
저널정보
한국통신학회 한국통신학회논문지 한국통신학회논문지 제38권 제1호(통신이론 및 시스템)
발행연도
2013.1
수록면
1 - 9 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 CS-LBP (Center-Symmetric Local Binary Pattern) 특징과 공간 피라미드를 이용한 BoF (Bag of Features)를 생성하고 이를 랜덤 포레스트(Random Forest) 분류기에 적용하여 인간의 행동을 인식하는 알고리즘을 제안한다. BoF를 생성하기 위해 영상을 균일한 패치로 나누고, 각 패치 마다 CS-LBP 특징을 추출한다. 행동 분류 성능을 향상시키기 위해 패치들마다 추출한 특징벡터들에 대해 K-mean 클러스터링을 적용하여 코드 북을 생성한다. 본 논문에서는 영상의 지역적인 특성을 고려하기 위해 공간 피라미드 방법을 적용하고 각 공간 레벨에서 추출된 BoF에 대해 가중치를 적용하여 최종적으로 하나의 특징 벡터로 결합한다. 행동 분류를 위해 결정트리의 앙상블로 이루어진 랜덤 포레스트는 학습 단계에서 각 행동 클래스를 위한 분류 모델을 만든다. 가중 BoF가 적용된 랜덤 포레스트는 다양한 인간 행동 영상을 포함하고 있는 Standford Actions 40 데이터를 성공적으로 분류하였다. 또한 기존 방법에 비해 분류 성능이 유사하거나 우수하며, 한 장의 영상에 대해 빠른 인식속도를 보였다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 가중치 BoF (bag-of-features) 생성
Ⅲ. Random Forest를 이용한 인간 행동 분류
Ⅳ. 실험 및 결과 분석
Ⅴ. 결론
Reference

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-567-000420652