메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
문창권 (배재대학교)
저널정보
한국통상정보학회 통상정보연구 통상정보연구 제12권 제1호
발행연도
2010.3
수록면
99 - 121 (23page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper reviews the categories and properties of risk measures, analyzes the classes and structural equations of volatility forecasting models, and presents the practical methodologies and their expansion methods of estimating and forecasting the volatilities of exchange rates using Excel spreadsheet modeling.
We apply the GARCH(1,1) model to the Korean won(KRW) denominated daily and monthly exchange rates of USD, JPY, EUR, GBP, CAD and CNY during the periods from January 4, 1998 to December 31, 2009, make the estimates of long-run variances in the returns of exchange rate calculated as the step-by-step change rate, and test the adequacy of estimated GARCH(1,1) model using the Box-Pierce-Ljung statistics Q and chi-square test-statistics.
We demonstrate the adequacy of GARCH(1,1) model in estimating and forecasting the volatility of exchange rates in the monthly series except the semi-variance GARCH(1,1) applied to KRW/JPY100 rate. But we reject the adequacy of GARCH(1,1) model in estimating and forecasting the volatility of exchange rates in the daily series because of the very high Box-Pierce-Ljung statistics in the respective time lags resulting to the self-autocorrelation. In conclusion, the GARCH(1,1) model provides for the easy and helpful tools to forecast the exchange rate volatilities and may become the powerful methodology to overcome the application difficulties with the spreadsheet modeling.

목차

Abstract
Ⅰ. 서론
Ⅱ. 위험 측정과 변동성의 추정 및 예측
Ⅲ. GARCH(1,1)모형의 환율변동성 추정 적용
Ⅳ. 추정모형의 타당성 검정과 변동성 예측
Ⅴ. 요약 및 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-326-000770392