메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
오창환 (호서대학교) 주효남 (호서대학교) 류근호 (호서대학교)
저널정보
제어로봇시스템학회 제어로봇시스템학회 논문지 제어로봇시스템학회 논문지 제14권 제5호
발행연도
2008.5
수록면
415 - 419 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Detecting and correcting defects on LCD glasses early in the manufacturing process becomes important for panel makers to reduce the manufacturing costs and to improve productivity. Many attempts have been made and were successfully applied to detect and identify simple defects such as scratches, dents, and foreign objects on glasses. However, it is still difficult to robustly detect low-contrast defect region, called Mura or blemish area on glasses. Typically, these defect areas are roughly defined as relatively large, several millimeters of diameter, and relatively dark and/or bright region of low Signal-to-Noise Ratio (SNR) against background of low-frequency signal. The aim of this article is to present a robust algorithm to segment these blemish defects. Early 90"s, a highly robust estimator, known as the Model-Fitting (MF) estimator was developed by X. Zhuang et. al. and have been successfully used in many computer vision application. Compared to the conventional Least-Square (LS) estimator the MF estimator can successfully estimate model parameters from a dataset of contaminated Gaussian mixture. Such a noise model is defined as a regular white Gaussian noise model with probability $1-\varepsilon$ plus an outlier process with probability $varepsilon$. In the sense of robust estimation, the blemish defect in images can be considered as being a group of outliers in the process of estimating image background model parameters. The algorithm developed in this paper uses a modified MF estimator to robustly estimate the background model and as a by-product to segment the blemish defects, the outliers.

목차

Abstract
Ⅰ. 서론
Ⅱ. MF estimator의 적용
Ⅲ. 수치 모사 결과 및 토의
Ⅳ. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-569-003194853