메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Quoc Bao Truong (University of Ulsan) Heo Nam Geon (University of Ulsan) Byung Ryong Lee (University of Ulsan)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS-SICE 2009
발행연도
2009.8
수록면
671 - 676 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, we present a two-stage vision-based approach to detect front and rear vehicle views in road scene images using eigenspace and a support vector machine for classification. The first stage is hypothesis generation (HG), in which potential vehicles are hypothesized. During the hypothesis generation step, we use a vertical, horizontal edge map to create potential regions where vehicles may be present. The second stage is hypothesis verification (HV). In this stage, all hypotheses are verified by using a Principle Component Analysis (PCA) for feature extraction and a Support Vector Machine (SVM) for classification, which is robust for both front and rear vehicle view detection problems. Our methods have been tested on different real road images and show very good performance.

목차

Abstract
1. INTRODUCTION
2. HYPOTHESIS GENERATION USING LONG VERTICAL, HORIZONTAL EDGES AND REPAIR LONG HORIZONTAL EDGES
3. HYPOTHESIS VERIFICATION USING PCA FEATRUE AND SVM CLASSIFIER
4. SIMULATION RESULTS
4. CONCLUTION AND FUTURE WORK
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-569-000773190