메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Fengming Ye (Waseda University) Shingo Mabu (Waseda University) Lutao Wang (Waseda University) Kotaro Hirasawa (Waseda University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS-SICE 2009
발행연도
2009.8
수록면
3,474 - 3,479 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Genetic Network Programming(GNP) which has been developed for dealing with problems in dynamic envi-ronments is a newly propose devolutionary approach with the data structure of directed graphs. GNP has been used in many different areas such as datamining, extracting trading rules of stock markets, elevator supervised control systems, etc and has obtained some out standing results. Focusing on GNP’s distinguishing expressionability of the graph structure, this paper proposes a method named Genetic Network Program-ming with General Individual Recon struction(GNP with GIR) which reconstructs the gene of randomly selected individuals and then under goes the special genetic operations by using the transition information of betterin dividuals. The unique indi-vidual reconstruction and genetic operations make individuals not only learn the experiences of better individuals but also strength enexploratio and exploration ability. GNP with GIR will be applied to the tile-world which is an excellent bench mark for evaluating the proposed architecture. The performances of GNP with GIR will becompared with conventional GNP demonstrating its superiority.

목차

Abstract
I.Introduction
II.Genetic Network Programming
III.GNP with General Individual Reconstruction
IV.Simulations
V.Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-569-000768733