메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Samer Yahya (University of Malaya) Haider A. F. Mohamed (University of Nottingham Malaysia Campus) M. Moghavvemi (University of Malaya) S. S. Yang (University of Malaya)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS-SICE 2009
발행연도
2009.8
수록면
4,530 - 4,535 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
An iterative method using the neural networks to solve the inverse kinematics problem for equal length links redundant manipulators is presented in this paper. The training phase, calculating the neural networks weights, is accomplished for a new proposed geometrical method to solve the problem of multi-solution caused by redundancy. The use of this geometrical method results in one solution among the infinite solutions of the inverse kinematics of theredundant manipulators. This method is very effective for avoiding the singularity problem because it guarantees that there is no lining up for two or more links. Another advantage for this method is that the angles between the links willbe set between two maximum and minimum values. This means that the end-effecter can reach any point on the desired path and the angles between the links will not be less than the minimum limit or more than the maximum limit, which makes this method effective for joint limits. To demonstrate the effectiveness of this proposed method, experiments were conducted on an 8 links hyper redundant manipulator in this paper. In addition, the workspace of the manipulator is calculated for this proposed method.

목차

Abstract
1. INTRODUCTION
2. THE NEURAL NETWORKS TOPOLOGY AND THE LEARNING METHOD
3. THE GEOMETRICAL METHOD FOR THE INVERSE KINEMATICS
4. MINIMUM AND MAXIMUM REACH OF THE MANIPULATOR
5. WORKSPACE OF THE PROPOSED METHOD
6. SINGULARITY AVOIDANCE
6. SIMULATION RESULTS
7. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-569-000760742