메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김진용 (부산대학교) 서경환 (부산대학교)
저널정보
한국기상학회 대기 대기 Vol.24 No.4
발행연도
2014.12
수록면
533 - 540 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Statistical forecast models for the prediction of the summertime Changma precipitation have been developed in this study. As effective predictors for the Changma precipitation, the springtime sea surface temperature (SST) anomalies over the North Atlantic (NA1), the North Pacific (NPC) and the tropical Pacific Ocean (CNINO) has been suggested in Lee and Seo (2013). To further improve the performance of the statistical prediction scheme, we select other potential predictors and construct 2 additional statistical models. The selected predictors are the Northern Indian Ocean (NIO) and the Bering Sea (BS) SST anomalies, and the spring Eurasian snow cover anomaly (EUSC). Then, using the total three statistical prediction models, a simple ensemble-mean prediction is performed. The resulting correlation skill score reaches as high as ~0.90 for the last 21 years, which is ~16% increase in the skill compared to the prediction model by Lee and Seo (2013). The EUSC and BS predictors are related to a strengthening of the Okhotsk high, leading to an enhancement of the Changma front. The NIO predictor induces the cyclonic anomalies to the southwest of the Korean peninsula and southeasterly flows toward the peninsula, giving rise to an increase in the Changma precipitation.

목차

Abstract
1. 서론
2. 자료 및 분석방법
3. 결과 및 분석
4. 요약 및 제언
REFEENCES

참고문헌 (15)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-453-001001945