메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Chang-Hoon Kum (Hanyang University) Dong-Chan Cho (Hanyang University) Moon-Soo Ra (Hanyang University) Whoi-Yul Kim (Hanyang University)
저널정보
대한전자공학회 대한전자공학회 ISOCC ISOCC 2013 Conference
발행연도
2013.11
수록면
215 - 218 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
A lane detection system using around view monitoring (AVM) images is presented in this paper. To provide safe driving condition, many lane detection approaches have been proposed. However, previous approaches cannot detect lanes stably in low visibility condition such as foggy or rainy days because of the use of frontal camera. The proposed lane detection system uses ego-vehicle’s surrounding road information to overcome this problem. The proposed method can be split into two stages: generation of AVM images from four fisheye cameras and lane detection using AVM images. To generate AVM images, we use four fisheye cameras mounted on sides, front, and rear of the vehicle. Top-view images covering the surround area of the vehicle are generated from four fisheye images by calibrations of each camera and their relative camera pose. The lane detection procedure consists of detecting and grouping lane responses, fitting lane responses by a linear model, and tracking lanes with kalman filter to smooth the estimates. Experimental results on full lanes and dashed lanes show that the proposed method can achieve the detection accuracies of 98.78% and 90.88% respectively and processing speed of 1 ms per frame in a desktop computer.

목차

Abstract
Introduction
AVM image generation
Lane Detection and Tracking
Experimental Results
Conclusion
References

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-569-001048887