메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박우진 (서울대학교) 유기윤 (서울대학교)
저널정보
대한공간정보학회 대한공간정보학회지 한국지형공간정보학회지 제23권 제2호
발행연도
2015.6
수록면
89 - 96 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
위치기반 소셜 미디어 데이터는 빅데이터, 위치기반서비스 등 다양한 분야에서 활용가능성이 매우 큰 데이터이다. 본 연구에서는 위치기반 소셜 미디어 데이터의 텍스트 정보를 분석하여 주요한 키워드들이 공간적으로 어떻게 분포하고 있는지를 파악할 수 있는 일련의 분석방법론을 적용해보았다. 이를 위해, 위치태그를 지닌 트윗 데이터를 서울시 강남지역과 그 주변지역에 대하여 2013년 8월 한달 간 수집하였으며, 이 데이터를 대상으로 하여 텍스트 마이닝을 통해 주요 키워드들을 도출하였다. 이러한 키워드들 중 음식, 엔터테인먼트, 업무 및 공부의 세 카테고리에 해당하는 키워드들만 추출, 분류하였으며 각 카테고리에 해당하는 트윗 데이터들에 대해서 공간적 클러스터링을 실시하였다. 도출된 각 카테고리별 클러스터들을 실제 그 지역의 건물 또는 벤치마크 POI들과 비교한 결과, 음식 카테고리 클러스터는 대규모 상업지역들과 일치도가 높았고 엔터테인먼트 카테고리의 클러스터는 공연장, 극장, 잠실운동장 등과 일치하였다. 업무 및 공부 카테고리 클러스터들은 학원 밀집지역 및 사무용 빌딩 밀집지역과 높은 일치도를 나타내었다.

목차

要旨
Abstract
1. 서론
2. 대상데이터
3. 키워드 도출 및 카테고리화
4. 공간적 클러스터링 분석
5. 결론
References

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-533-001537441