메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박한훈 (부경대학교) 문광석 (부경대학교)
저널정보
한국멀티미디어학회 멀티미디어학회논문지 멀티미디어학회논문지 제19권 제2호
발행연도
2016.2
수록면
138 - 145 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
LLAH(Locally Likely Arrangement Hashing) is a method which describes image features by exploiting the geometric relationship between their neighbors. Inherently, it is more robust to large view change and poor scene texture than conventional texture-based feature description methods. However, LLAH strongly requires that image features should be detected with high repeatability. The problem is that such requirement is difficult to satisfy in real applications. To alleviate the problem, this paper proposes a method that improves the matching rate of LLAH by exploiting together the brightness of features. Then, it is verified that the matching rate is increased by about 5% in experiments with synthetic images in the presence of Gaussian noise.

목차

ABSTRACT
1. 서론
2. 밝기 정보를 결합한 LLAH
3. 실험 결과 및 분석
4. 결론
REFERENCE

참고문헌 (8)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-004-002542657