메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Ki-Hyeon Kwon (Kangwon National University) Hyung-Bong Lee (Gangneung-Wonju National University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제21권 제3호
발행연도
2016.3
수록면
83 - 89 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Internet of Things (IoT) is widely used for biomechanics in sports activities and AHRS(Attitude and Heading Reference System) is a more cost effective solution than conventional high-grade IMUs (Inertial Measurement Units) that only integrate gyroscopes. In this paper, we attach the AHRS to the snowboard to measure the motion data like Air To Fakie, Caballerial and Free Style. In order to reduce the measurement error, we have adopted the sensors equipped with Kalman filtering and also used Euler angle to quaternion conversion to reduce the Gimbal-lock effect. We have tested and evaluated the accuracy and execution time of the pattern recognition algorithms like PCA, ICA, LDA, SVM to show the recognition possibility of it on the basic motions of Snowboarding from the 9-axis trajectory information which is gathered from AHRS sensor. With the result, PCA, ICA have low accuracy, but SVM have good accuracy to use for recognition of basic motions of Snowboarding.

목차

Abstract
Ⅰ. Introduction
Ⅱ. Measurement System
Ⅲ. Pattern Recognition
Ⅳ. Measurement Experiment of Basic Motions of Snowboarding
Ⅴ. Conclusions
REFERENCES

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-325-002759972