메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김선환 (수원대학교) 오성권 (수원대학교)
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제65권 제9호
발행연도
2016.9
수록면
1,531 - 1,540 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
In this paper, we propose vehicle license plate recognition system based on Radial Basis Function Neural Networks (RBFNNs) with the use of local binarization functions and canny edge algorithm. In order to detect the area of license plate and also recognize license plate numbers, binary images are generated by using local binarization methods, which consider local brightness, and canny edge detection. The generated binary images provide information related to the size and the position of license plate. Additionally, image warping is used to compensate the distortion of images obtained from the side. After extracting license plate numbers, the dimensionality of number images is reduced through Principal Component Analysis (PCA) and is used as input variables to RBFNNs. Particle Swarm Optimization (PSO) algorithm is used to optimize a number of essential parameters needed to improve the accuracy of RBFNNs. Those optimized parameters include the number of clusters and the fuzzification coefficient used in the FCM algorithm, and the orders of polynomial of networks. Image data sets are obtained by changing the distance between stationary vehicle and camera and then used to evaluate the performance of the proposed system.

목차

Abstract
1. 서론
2. 데이터베이스 구성 및 분석
3. 번호 검출과정 및 전처리 알고리즘과 최적화된 RBFNNs 패턴분류기 설계
4. 실험 및 결과 고찰
5. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-560-001135011