메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
문병선 (솔텍시스템) 최명환 (서강대학교)
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회 컴퓨팅의 실제 논문지 정보과학회 컴퓨팅의 실제 논문지 제22권 제5호
발행연도
2016.5
수록면
201 - 208 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
실시간으로 여러 시계열 데이터를 수집, 저장하는 데는 많은 저장 공간을 요구하게 된다. 이러한 공간 문제를 해결하는 방안으로, 이산 코사인 변환 압축에서 가변 샘플 크기를 사용하는 방안을 제안하였다. 시계열 데이터 셋은 값의 변화가 작을수록, 그리고 변화의 빈도가 낮을수록 압축률이 높아지는 특성을 가지고 있으며 이러한 특성을 잘 반영할 수 있는 척도로 변동 계수와 인접 요소 간 변동성 계수를 사용하여 가변 샘플 크기를 결정하는 데 사용하였다. 여러 실제 데이터 셋을 대상으로 시험한 결과, 두 방식 모두 양호한 압축률을 보이고 있다. 그러나 인접 요소간 변동성 계수 기반 압축 방식이 변동 계수 기반 방식 보다 샘플 크기 결정 방식이 훨씬 간단할 뿐만 아니라 보다 나은 압축률을 보임을 확인하였다.

목차

요약
Abstract
1. 서론
2. 이산 코사인 변환 압축과 복원
3. 샘플 크기와 이산 코사인 변환 압축률과의 관계
4. 가변 샘플 크기 결정과 압축 성능 비교
5. 결론 및 향후 과제
References

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-569-002835540