메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Khiem Minh Nguyen (Cantho University) Hai Thanh Nguyen (Cantho University) Hiep Xuan Huynh (Cantho University)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.5 No.3
발행연도
2016.6
수록면
222 - 229 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Linked Data is a powerful technology for storing and publishing the structures of data. It is helpful for web applications because of its usefulness through semantic query data. However, using Linked Data is not easy for ordinary users who lack knowledge about the structure of data or the query syntax of Linked Data. For that problem, we propose a translator component that is used for translating RESTful/JSON request messages into SPARQL commands based on ontology – a metadata that describes the structure of data. Clients do not need to worry about the structure of stored data or SPARQL, a kind of query language used for querying linked data that not many people know, when they insert a new instance or query for all instances of any specific class with those complex structure data. In addition, the translator component has the search function that can find a set of data from multiple classes based on finding the shortest paths between the target classes - the original set that user provide, and target classes- the users want to get. This translator component will be applied for any dynamic ontological structure as well as automatically generate a SPARQL command based on users’ request message.

목차

Abstract
1. Introduction
2. Related Works
3. Modeling
4. Generating SPARQL based on an Ontology Structure
5. Examples
6. Conclusion
References

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-569-000798122