메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jakkrit Pakdeeto (Suranaree University of Technology) Rangsan Chanpittayagit (Suranaree University of Technology) Kongpan Areerak (Suranaree University of Technology) Kongpol Areerak (Suranaree University of Technology)
저널정보
대한전기학회 Journal of Electrical Engineering & Technology Journal of Electrical Engineering & Technology Vol.12 No.3
발행연도
2017.5
수록면
1,146 - 1,155 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Normally, the artificial intelligence algorithms are widely applied to the optimal controller design. Then, it is expected that the best output performance is achieved. Unfortunately, when resulting controller parameters are implemented by using the practical devices, the output performance cannot be the best as expected. Therefore, the paper presents the optimal controller design using the combination between the state-space averaging model and the adaptive Tabu search algorithm with the new criteria as two penalty conditions to handle the mentioned problem. The buck-boost converter regulated by the cascade PI controllers is used as the example power system. The results show that the output performance is better than those from the conventional design method for both input and load variations. Moreover, it is confirmed that the reported controllers can be implemented using the realistic devices without the limitation and the stable operation is also guaranteed. The results are also validated by the simulation using the topology model of MATLAB and also experimentally verified by the testing rig.

목차

Abstract
1. Introduction
2. Considered Power System
3. State-Space Averaging Model
4. Optimal Controller Design
5. Simulation Results
6. Experimental Results
7. Conclusion
References

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-560-002385406