메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Kisoon Hyun (Sungshin Women’s University) Junyeop Lee (Inha University)
저널정보
인하대학교 정석물류통상연구원 Journal of International Logistics and Trade Journal of International Logistics and Trade Vol.15 No.2
발행연도
2017.8
수록면
61 - 71 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
This paper examines the network dynamics of the cross-border trades utilizing Social Network Analysis (SNA) based on data obtained from the WTO-OECD Trade in Value Added database from 2000-2011. The main results of this paper are as follows: regarding the top 10 in-degree centrality industries, industries in China, Germany, and the U.S. have emerged as the largest importers of foreign value added, implying that the global production network is dominated by two different types of industries. The first type includes processing and assembling functions in China and Germany. The other type of industry involves foreign value added largely for domestic final demand in the U.S. Secondly, there are also two types of brokerage roles. U.S. industries are operating in a liaison role, while Chinese and German industries are mostly operating as coordinator or gatekeeper. Thirdly, manufacturing industries in China and Germany which have emerged as higher in-degree centrality incur a large portion of their value added from the logistics industry. This suggests that those leading industries with the highest characteristics of hubness in the global production network cannot sustain their network status without efficient utilization of the logistics industry.

목차

ABSTRACT
1. Introduction
2. Description of social network methodology
3. Industry’s comparative status and social network analysis
4. Betweenness centrality and the logistics industry
5. Concluding remarks
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0