메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김영민 (한양대학교) 이지영 (한양대학교) 윤일로 (다누시스) 한택진 (한양대학교) 김철연 (한양대학교)
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회 컴퓨팅의 실제 논문지 정보과학회 컴퓨팅의 실제 논문지 제24권 제3호
발행연도
2018.3
수록면
151 - 156 (6page)
DOI
10.5626/KTCP.2018.24.3.151

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 연구는 영상 분석에서 최근 좋은 연구 성과를 내고 있는 컨볼루션 신경망 (Convolutional Neural Network: CNN) 기법을 실외 CCTV 영상 분석에 적용하여 객체 유형을 분류하는 방법론은 제안한다. 배경 차분 (background subtraction)을 사용하여 찾고자 하는 객체 후보들을 추출해내고 이를 CNN을 이용해 분류함으로써 계산량을 줄이는 효과를 얻는 방법이다. CNN 학습용 CCTV 영상 수집을 위해 범죄 발생이 주로 일어나는 골목길, 놀이터 등에서 촬영한 CCTV 영상 DB를 구축하였으며 우선적으로 사람인 객체만 검출하는 분류기를 학습하였다. 다양한 학습 데이터 사이즈와 세팅에 맞게 실험하였으며 실험 결과 약 80%의 분류 정확도를 보였으며 새로운 CCTV 영상으로 테스트했을 때 약 67.5%의 성능을 보였다.

목차

요약
Abstract
1. 서론
2. 배경 차분과 CNN 기반의 객체 검출 방법
3. 실험
4. 결론
References

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0