메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Akmaljon Palvanov (Gachon University) Young Im Cho (Gachon University)
저널정보
한국지능시스템학회 INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS Vol.18 No.2
발행연도
2018.6
수록면
126 - 134 (9page)
DOI
10.5391/IJFIS.2018.18.2.126

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Recognizing handwritten digits was challenging task in a couple of years ago. Thanks to machine learning algorithms, today, the issue has solved but those algorithms require much time to train and to recognize digits. Thus, using one of those algorithms to an application that works in real-time, is complex. Notwithstanding use of a trained model, if the model uses deep neural networks it requires much more time to make a prediction and becomes more complicated as well as memory usage also increases. It leads real-time application to delay and to work slowly even using trained model. A memory usage is also essential as using smaller memory of trained models works considerable faster comparing to models with huge pre-processed memory. For this work, we implemented four models on the basis of unlike algorithms which are capsule network, deep residual learning model, convolutional neural network and multinomial logistic regression to recognize handwritten digits. These models have unlike structure and they have showed a great results on MNIST before so we aim to compare them in real-time environment. The dataset MNIST seems most suitable for this work since it is popular in the field and basically used in many state-of-the-art algorithms beyond those models mentioned above. We purpose revealing most suitable algorithm to recognize handwritten digits in real-time environment. Also, we give comparisons of train and evaluation time, memory usage and other essential indexes of all four models.

목차

Abstract
1. Introduction
2. Related Works
3. Methods
4. Experiments
5. Conclusion
References

참고문헌 (34)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-003-002236851