메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이숙의 (충남대학교) 임수종 (한국전자통신연구원)
저널정보
한국어학회 한국어학 한국어학 제80권
발행연도
2018.8
수록면
151 - 175 (25page)
DOI
10.20405/kl.2018.08.80.151

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper proposed a method of semantic recognition to improve the extraction of correct answers of the Q&A system through machine learning. For this purpose, the semantic recognition method is described based on the distribution of predicative nouns. Predicative noun vocabularies and sentences were collected from Wikipedia documents. The predicative nouns are typed by analyzing the environment in which the predicative nouns appear in sentences. This paper proposes a semantic recognition method of predicative nouns to which rules can be applied. In Chapter 2, previous studies on predicative nouns were reviewed. Chapter 3 explains how predicative nouns are distributed. In this paper, every predicative nouns that can not be processed by rules are excluded, therefore, the predicative nouns noun forms combined with the case marker ‘의’ were excluded. In Chapter 4, we extracted 728 sentences composed of 10,575 words from Wikipedia. A semantic analysis engine tool of ETRI was used and presented a predicative nouns noun that can be handled semantic recognition language.

목차

1. 서론
2. 선행 연구
3. 서술성 명사의 목록과 분포
4. 의미역 인식 자동처리를 위한 서술성 명사의 처리
4. 결론
참고문헌

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0