메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Hong Jin Jeong (한국생산기술연구원) Chang Wook Kang (한양대학교) Bo Hyun Kim (한국생산기술연구원)
저널정보
Korean Society for Precision Engineering Journal of the Korean Society for Precision Engineering Journal of the Korean Society for Precision Engineering Vol.35 No.10
발행연도
2018.10
수록면
973 - 985 (13page)
DOI
10.7736/KSPE.2018.35.10.973

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Quality management is very important to ensure competitiveness through good quality products. It is performed in all fields of manufacturing. While small and medium-sized manufacturing enterprises have introduced quality management systems for systematic quality control, the effectiveness of such systems has been very low. To overcome this problem, it is necessary to develop and introduce a quality management system that can reflect uality work characteristics of individual SMMEs and support quality work on a company-wide basis. This study constructed a quality management platform for all SMMEs by first gathering common functions essential to perform quality work and then created a customized quality management system for each company by adding optional functions reflecting characteristics and requirements of the individual company. The quality management platform is designed in detail through a series of processes such as deriving functions that users want, redefining them, organizing the information flow, and designing the DB and user interface. It is structured in three steps involving DB layer, functional layer, and service layer. Its effectiveness was demonstrated by constructing and operating the customized quality management system applied to actual companies.

목차

1. Introduction
2. Summary of Previous Research
3. Design of QM Platform
4. Examples of Platform-Based QM System Application
5. Conclusions
REFERENCES

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-555-003599209