메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Huawei Zhang (Chongqing University of Posts and Telecommunications) Chenghao Chen (Chongqing University of Posts and Telecommunications) Yi Zhou (Chongqing University of Posts and Telecommunications)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2018
발행연도
2018.10
수록면
34 - 38 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The research on robot audition aims to study advanced techniques to help robots acquire acoustic information from the ambient environments. In many real situations, the environment may be adverse like being highly reverberant, and the microphone signal received by the robots may consist of a superposition of several sounds. Geometric source separation (GSS) algorithm uses prior geometric information to separate simultaneously present sound sources and thus is suitable for robot audition applications. However, the performance of GSS deteriorates as the reverberation time increases even if highly accurate sources locations are available, let alone classic source localization (SL) methods themselves can hardly perform well in reverberant environments. In this paper, a joint GSS and SL algorithm is proposed for robot audition applications in strong reverberant environments. This new method estimates the parameters of blind dereverberation (BD), SL and GSS alternatively, which is similar to the conditional separation and dereverberation (CSD) method to release the one-source assumption of many BD algorithms. Furthermore, the proposed method can also be used as a robust SL algorithm alone if necessary. Experimental results verified the robust performance achieved by the proposed algorithm.

목차

Abstract
1. INTRODUCTION
2. CSD METHOD REVIEW
3. THE PROPOSED ROBUST JOINT GSS AND SL ALGORITHM
4. EXPERIMENTS
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-003-003537959