메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Kazuhiro HATANO (Kyushu Institute of Technology) Seiichi MURAKAMI (University of Occupational and Environmental Health) Huimin LU (Kyushu Institute of Technology) Joo Kooi TAN (Kyushu Institute of Technology) Hyoungseop KIM (Kyushu Institute of Technology) Takatoshi AOKI (University of Occupational and Environmental Health)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2018
발행연도
2018.10
수록면
1,338 - 1,342 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Osteoporosis is one of the famous bone diseases. It is a major cause of deteriorating the quality of life, and early detection and early treatment are becoming socially important. Visual screening using Computed Radiography (CR) images is effective for diagnosis of osteoporosis, but there are problems of increasing the burden on doctors, variation in diagnostic results due to differences in experiences of doctors, and undetected lesions. In order to solve this problem, we are working on a computer-aided diagnosis (CAD) system for osteoporosis. In this paper, we propose segmentation methods of the phalange region from the phalangeal CR images as a preprocessing of classification of osteoporosis. In the proposed method, we construct a segmentation model using U-Net, which is a type of deep convolution neural network (DCNN). The proposed method was applied to input images generated from CR images of 101 patients with both hands, and evaluated using the Intersection over Union (IoU) values. The result was 0.914 in IoU.

목차

Abstract
1. INTRODUCTION
2. METHODS
3. EXPERIMENTAL RESULTS
4. DISCUSSION
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-003-003539953