메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jongwook Lee (Kyungpook National University)
저널정보
건국대학교 지식콘텐츠연구소 International Journal of Knowledge Content Development & Technology International Journal of Knowledge Content Development & Technology Vol.8 No.3
발행연도
2018.9
수록면
5 - 28 (24page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Socialization of doctoral students refers to the process through which they acquire various types of information about their work, department, university, and discipline for their future careers. This study aims to investigate information behaviors, with emphasis on identifying types of information exchanged in mentoring between faculty advisors and their doctoral students in library and information science (LIS). As a first step to developing a content framework for LIS doctoral mentoring, the author interviewed ten LIS doctoral students from nine U.S. universities. Based on data from these interviews, the author identified sixteen types of information exchanged: language, history, coursework, research, skills, teaching, networking, structure, politics, goals, strategies, values, norms/tradition, rules/policies, benefits, and personal life. In comparison with a content framework used, four dimensions were newly added. In addition to the identification of content dimensions, the author observed four meaningful contextual levels to which the content types can be applied: work, department/school, university, and discipline. The qualitative data also showed that interpersonal factors of advisees/advisors and contextual factors might relate to information exchange in doctoral mentoring. In a following paper, the author will present the results of a follow‐up survey that tests and generalizes the findings of this study.

목차

ABSTRACT
1. Introduction
2. Literature Review
3. Pilot Study
4. Methods
5. Findings
6. Discussion and Limitations
7. Conclusions
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-309-000093668