메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김태수 (Sangmyung University) 김종욱 (Sangmyung University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제23권 제11호(통권 제176호)
발행연도
2018.11
수록면
17 - 24 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Today, we are living in the era of data and information. With the advent of Internet of Things (IoT), the popularity of social networking sites, and the development of mobile devices, a large amount of data is being produced in diverse areas. The collection of such data generated in various area is called big data. As the importance of big data grows, there has been a growing need to share big data containing information regarding an individual entity. As big data contains sensitive information about individuals, directly releasing it for public use may violate existing privacy requirements. Thus, privacy-preserving data publishing (PPDP) has been actively studied to share big data containing personal information for public use, while preserving the privacy of the individual. K-anonymity, which is the most popular method in the area of PPDP, transforms each record in a table such that at least k records have the same values for the given quasi-identifier attributes, and thus each record is indistinguishable from other records in the same class. As the size of big data continuously getting larger, there is a growing demand for the method which can efficiently anonymize vast amount of dta. Thus, in this paper, we develop an efficient k-anonymity method by using Spark distributed framework. Experimental results show that, through the developed method, significant gains in processing time can be achieved.

목차

Abstract
I. Introduction
II. Background
III. K-Anonymity on Spark
IV. Experiment
V. Conclusion
REFERENCES

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-004-000226445