메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Ji‐Hoon Bae Junho Yim Nae‐Soo Kim Cheol‐Sig Pyo Junmo Kim
저널정보
한국전자통신연구원 [ETRI] ETRI Journal ETRI Journal 제41권 제2호
발행연도
2019.4
수록면
0 - 0 (1page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
We devise a layer‐wise hint training method to improve the existing hint‐based knowledge distillation (KD) training approach, which is employed for knowledge transfer in a teacher‐student framework using a residual network (ResNet). To achieve this objective, the proposed method first iteratively trains the student ResNet and incrementally employs hint‐based information extracted from the pretrained teacher ResNet containing several hint and guided layers. Next, typical softening factor‐based KD training is performed using the previously estimated hint‐based information. We compare the recognition accuracy of the proposed approach with that of KD training without hints, hint‐based KD training, and ResNet‐based layer‐wise pretraining using reliable datasets, including CIFAR‐10, CIFAR‐100, and MNIST. When using the selected multiple hint‐based information items and their layer‐wise transfer in the proposed method, the trained student ResNet more accurately reflects the pretrained teacher ResNet's rich information than the baseline training methods, for all the benchmark datasets we consider in this study.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0