메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이연숙 (Yonsei Univ.) 전은정 (Yonsei Univ.,) 파스마리아 빅토리아 (Yonsei Univ.) 안소미 (Baekseok Univ.)
저널정보
한국생태환경건축학회 KIEAE Journal KIEAE Journal Vol.19 No.2(Wn.96)
발행연도
2019.4
수록면
5 - 15 (11page)
DOI
10.12813/kieae.2019.19.2.005

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Purpose: While rapid economic growth in the recent years helped improve the quality of life of our modern society, the declining birth rate, & super aging population have brought a serious concern for the future. Among the diverse coping strategies to prepare for the future, community planning introduces a way to promote aging in place. The purpose of this research is to extract successful socially integrated planning features and useful implications from a supportive-housing in the community village, Share Kanazawa, located in a rural area 3 hours away from Tokyo, Japan. The Village has been considered as an innovative practice due to its unique and quality approach towards a sustainable community. Method: This research is qualitative research which employed a field visit observation and in-depth interviews for data collection along with the literature survey. To analyze the socio-integrative planning characteristics, 2 aspects were selected such as community engagement and flexi-care service which are key factors to cause social integration. Result: As a result, the community assets including humanware, hardware and contentsware characteristics of the village were analyzed and discussed in relation to the two socio-integrative aspects. The characteristics of the village, its unique approach to promote engagement and to provide flexi-care can be useful in developing a Korean model to cope with the rapid aging society problem.

목차

ABSTRACT
1. 서론
2. 문헌고찰
3. 조사대상 및 분석방법
4. 쉐어가나자와 내 서비스고령자주택 특성 분석
5. 결론 및 제언
Reference

참고문헌 (47)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-610-000779009