메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Madhan Mohan (ABB GISPL) Evgeny Tsyplakov (ABB Semiconductors) Christian Winter (ABB Semiconductors) Harshavardhan Marabathina (ABB GISPL)
저널정보
전력전자학회 ICPE(ISPE)논문집 ICPE 2019-ECCE Asia
발행연도
2019.5
수록면
1,696 - 1,702 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
IGCTs are increasingly becoming the device of choice for high power applications such as HVDC and FACTS with low losses and high reliability. Voltage Source Converters (VSC) with IGCT semiconductors are the choice in high demanding applications with high power and current ratings primarily due to low overall losses and high power handling capability. IGCT circuit typically require a di/dt limiting snubber for the protection of freewheeling diodes from huge current derivatives and so an over voltage limiting mechanism for the protection of IGCTs. This paper presents the performance evaluation of IGCT and its Clamp Circuit in terms of losses, focusing on MMC converter cells for use in high power applications such as HVDC, FACTS. The proposed method is based on look up tables generated for clamp circuit energy dissipation for the different converter switching states and is synchronized with the actual switching transitions. Additionally, the temperature dependency of the reverse recovery current for the freewheeling diode losses also considered. Hence, it yields an accurate, yet computationally efficient method of loss calculation. The results for IGCT based MMC converters are also compared with IGBT based MMC converter to clearly highlight the advantages of one over the other.

목차

Abstract
I. INTRODUCTION
II. LOSSES IN THE CLAMP CIRCUIT
III. PROPOSED METHOD OF CLAMP CIRCUIT LOSS EVALUATION BASED ON CONVERTER SWITCHING STATES
IV. CALCULATION OF LOSSES AND JUNCTION TEMPERATURE OF THE HVDC-MMC
V. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0