메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한수학회 대한수학회지 대한수학회지 제54권 제2호
발행연도
2017.1
수록면
685 - 696 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
A linear mapping $\phi$ on an algebra $\mathcal{A}$ is called a centralizable mapping at $G\in\mathcal{A}$ if $\phi(AB)=\phi(A)B=A\phi(B)$ for each $A$ and $B$ in $\mathcal{A}$ with $AB=G$, and $\phi$ is called a derivable mapping at $G\in\mathcal{A}$ if $\phi(AB)=\phi(A)B+A\phi(B)$ for each $A$ and $B$ in $\mathcal{A}$ with $AB=G$. A point $G$ in $\mathcal{A}$ is called a full-centralizable point (resp. full-derivable point) if every centralizable (resp. derivable) mapping at $G$ is a centralizer (resp. derivation). We prove that every point in a von Neumann algebra or a triangular algebra is a full-centralizable point. We also prove that a point in a von Neumann algebra is a full-derivable point if and only if its central carrier is the unit.

목차

등록된 정보가 없습니다.

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0