메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose Conditional survival (CS) provides important information on survival for a period of time after diagnosis. Currently, information on CS patterns of patients with nasopharyngeal carcinoma (NPC) is lacking. We aimed to analyze survival rate over time and estimate CS for NPC patients using a national population-based registry. Materials and Methods Patients diagnosed with NPC between 1973 and 2007 with at least 5-year follow-up were identified from the Surveillance Epidemiology End Results registry. Traditional survival rates and crude CS estimates were calculated using Kaplan-Meier analysis. Risk-adjusted survival curves were plotted from the proportional hazards model using the correct group prognosis method. Results For 7,713 patients analyzed, adjusted baseline 5-year overall survival improved significantly from 36.0% in patients diagnosed in 1973-1979, 41.7% in 1980-1989, 46.6% in 1990- 1999, to 54.7% in 2000-2007 (p < 0.01). CS analysis demonstrated that for every additional year survived, adjusted probability of surviving the next 5 years increased from 66.7% (localized), 54.0% (regional), and 35.3% (distant) at the time of diagnosis, to 83.7% (localized), 75.0% (regional), and 62.2% (distant) for patients who had survived 5 years. Adjusted 5-year CS differed among age, sex, tumor histology, ethnicity, and stage subgroups initially, but converged with time. Conclusion Treatment outcomes of NPC patients have greatly improved over the decades. Increases in CS become more prominent in patients with distant disease than in those with localized or regional disease as patients survive longer. CS provides more dynamic prognostic information for patients who have survived a period of time after diagnosis.

목차

등록된 정보가 없습니다.

참고문헌 (33)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0