메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국자료분석학회 Journal of The Korean Data Analysis Society Journal of The Korean Data Analysis Society 제17권 제6호
발행연도
2015.1
수록면
3,025 - 3,033 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
데이터 마이닝은 빅 데이터 안에 잠재되어 있는 정보나 예기치 못한 규칙 등을 탐색하여 이를 의사결정을 위한 근거로 활용하고자 하는 것이다. 본 논문에서는 연관성 평가 기준을 이용한 규칙의 채택률을 추정하기 위한 3 종류의 로지스틱 회귀 모형을 제안하고, 예제를 이용하여 가장 적절한 모형의 선정 방안에 대해 토의하였다. 각 모형에 대해 적합도를 검정한 결과, 모형 1(지지도와 신뢰도를 고려한 모형)은 적합하지 않는 것으로 나타났다. 따라서 이를 제외하고 모형 2(신뢰도와 향상도를 고려한 모형)와 모형 3(지지도와 향상도를 고려한 모형)에 대해 분류 결과의 정확도를 비교해본 결과. 모형 3보다는 모형 2가 더 높게 나타났다. 또한 모형 2에서는 향상도의 회귀계수의 값이 신뢰도의 회귀계수 값보다 크며, 모형 3에서는 지지도의 회귀계수에 비해 향상도의 회귀계수의 값이 크게 나타났다. 오즈비를 비교해보면 모형 2에서는 신뢰도가 한 단위 증가하면 상대비가 1.142배 증가하는 반면에 향상도가 한 단위 증가하면 상대비가 1.345배 증가하며, 모형 3에서는 지지도가 한 단위 증가하면 상대비가 1.088배 증가하는 반면에 향상도는 1.278배 증가하는 것으로 나타났다. 이들의 결과를 종합해볼 때 모형 2가 가장 바람직한 것으로 나타났다.

목차

등록된 정보가 없습니다.

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0