메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국잠사학회 International Journal of Industrial Entomology International Journal of Industrial Entomology 제37권 제1호
발행연도
2018.1
수록면
1 - 8 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The nerippe fritillary butterfly, Argynnis nerippe , is listed as an endangered species in Korea. Establishment of effective conservation strategies can be aided by the development and application of molecular markers that can be used to investigate the population genetics of the butterfly. Therefore, in this study, we identified ten microsatellite markers specific to A. nerippe using the Next-Seq 500 platform, and applied these markers to investigate the characteristics of five South Korean butterfly populations. Genotyping of 48 A. nerippe individuals from five localities showed that at each locus the number of alleles ranged from 4 to 14, and that the observed and expected heterozygosities were 0.324–0.863 and 0.138–0.985, respectively. Significant deviation from the Hardy–Weinberg equilibrium was not observed at any locus. Population structure analysis indicated that there are two genetic groups in Korea, but no population-based gene pool assignments were found. Analysis of F ST, R ST, and a principal coordinates analysis suggested that the Gureopdo and Yaecheon populations were isolated from other populations. Genetic isolation of the Gureopdo population may be a consequence of unequal population change between Gureopdo and inland populations and to the offshore habitat of Gureopdo. Genetic isolation of the Yaecheon population may be a consequence either of the southernmost location of the population or of the limited sample size available. Further studies with increased sample sizes will be necessary to draw robust conclusions on population isolation and to devise conservation strategies.

목차

등록된 정보가 없습니다.

참고문헌 (25)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0