메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Kyungpil Lee (Kwangwoon University) Youngmin Kim (Hongik University)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.8 No.5
발행연도
2019.10
수록면
405 - 414 (10page)
DOI
10.5573/IEIESPC.2019.8.5.405

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Artificial neural networks (ANNs) are being studied in various fields. However, classic ANNs have limitations in hardware implementation, due to computational complexity. On the other hand, spiking neural networks (SNNs), which are inspired by biological neural systems, have optimal characteristics in hardware implementation. In the SNN, communication is performed between neurons by using spikes, which are represented by a single bit. This reduces computational complexity and logic occupation in a device. SNNs have weights and delays as adjustable parameters, and have been successfully used for image classification. Although there are several mathematical spiking neuron models, to reduce computational complexity, this paper proposes a simplified and digital leaky integrate-and-fire (SDLIF) model, which is computationally efficient and powerful. Temporal coding is used as neural coding. We also describe a field-programmable gate array (FPGA) implementation using Verilog hardware description language (HDL), and discuss simple image pattern classification problems as verification. The final results demonstrate not only the performance of the SNN for image pattern recognition and classification, but also its efficiency, such as low logic occupation in the device, and low power consumption on the FPGA.

목차

Abstract
1. Introduction
2. Spiking Neuron Models
3. Simplified Spiking Neuron Model and Interconnection
4. Hardware Implementation
5. Experimental Results
6. Conclusions
References

참고문헌 (30)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-569-001222247