메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Yeji Lee (Ewha Womans University) Arati Kumari Shah (Philopho) Myounggon Kang (University of Seoul) Seongjae Cho (Ewha Womans University)
저널정보
대한전자공학회 JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE Journal of Semiconductor Technology and Science Vol.25 No.2
발행연도
2025.4
수록면
123 - 127 (5page)
DOI
10.5573/JSTS.2025.25.2.123

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, we present the hardware implementation and performance analysis of the digital equivalent of an integrate-and-fire (I&F) neuron model using the field-programmable gate array (FPGA) technology. Inspired by the human brain, the I&F neuron model is crucial for achieving energy-efficient neuromorphic systems. The digital implementation was performed on a Zynq multiprocessor system-on-chip (MPSoC) FPGA using the Xilinx Vivado Design Suite, replacing analog components with their digital counterparts. Simulation and implementation results demonstrated the ability of the model to accurately replicate the spiking behaviors of biological neurons while utilizing minimal FPGA resources. Specifically, the design used only 0.01% of the available lookup tables and flip-flops, ensuring a compact and efficient implementation. The total on-chip power consumption was measured to be 0.71 W, with a junction temperature of 25.7℃. These results validate the functionality and performance of the digital I&F neuron model and highlight its potential for integration into fully CMOS-based spiking neural networks. The compact design of the model, combined with low power consumption, makes it a promising candidate for scaling into larger and more complex neuromorphic computing systems.

목차

Abstract
I. INTRODUCTION
II. DESIGN OF DIGITAL NEURON CIRCUIT
III. RESULTS AND DISCUSSION
IV. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0