메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국융합학회 한국융합학회논문지 한국융합학회논문지 제10권 제2호
발행연도
2019.1
수록면
1 - 6 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
제안 모델은 소실 데이터를 포함하는 불완전한 데이터에서 정보의 손실을 최소화할 수 있도록 개발되었다. 이를 위한 과정은 우선 데이터 확장기법을 이용하여 손실 정보를 보상하도록 학습 데이터를 변환한다. 이 변환 과정에서 데이터의 속성값은 원-핫 인코딩으로 이진 또는 확률값으로 채워진다. 다음 이 변환 데이터는 딥러닝 모델에 입력되는데, 이때 각 속성의 카디너리티에 따라 엔트리 수가 일정하지 않게 된다. 그리고 각 속성의 엔트리 값들을 각각의 입력 노드에 할당하고 학습을 진행한다. 이점이 기존 학습 모델과의 차이점으로, 임의의 속성값이 입력층에서 여러 개의 노드로 분산되는 특이한 구조를 가진다. 제안 모델의 학습 성능을 평가하기 위해, 소실 데이터를 대상으로 다양한 실험을 수행하여 성능 면에서 우수함을 보인다. 제안 모델은 유비쿼터스 환경에서 손실을 최소화하기 위한 알고리즘으로 유용하게 사용될 것으로 본다.

목차

등록된 정보가 없습니다.

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0