메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국융합학회 한국융합학회논문지 한국융합학회논문지 제11권 제3호
발행연도
2020.1
수록면
1 - 7 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 논문은 불완전한 데이터를 처리하기 위해 2가지의 서로 다른 기법과 이를 학습하는 알고리즘을 소개한다. 첫째방법은 손실변수가 가질 수 있는 균등한 확률로 손실값을 할당하여 불완전한 데이터를 처리하고, SVM 알고리즘으로 이 데이터를 학습하는 것이다. 이 기법은 임의의 변수에 손실 값의 빈도가 높을수록 엔트로피가 높도록 하여 이 변수가 결정트리에서 선택되지 않도록 하는 것이다. 이 방법은 손실 변수에 남아있는 정보를 모두 무시하고 새로운 값을 할당한다는 특징이 있다. 이에 반해 새로운 방법은 손실 값을 제외하고 남아있는 정보로 엔트로피 확률을 구하고 이를 손실 변수의 추정 값으로 사용하는 것이다. 즉, 불완전한 학습데이터로부터 소실되지 않은 많은 정보들을 이용해 소실된 일부 정보를 복구하고 딥러닝을 이용해 학습한다. 이 2가지 방법은 학습데이터에서 차례로 변수 하나를 선택하고, 이 변수에 손실된 데이터의 비율을 달리하면서 서로 다른 측정값들의 결과들과 반복적으로 비교함으로써 성능을 측정한다.

목차

등록된 정보가 없습니다.

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0