메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이종찬 (청운대학교)
저널정보
한국융합학회 한국융합학회논문지 한국융합학회논문지 제12권 제11호
발행연도
2021.11
수록면
91 - 97 (7page)
DOI
https://doi.org/10.15207/JKCS.2021.12.11.091

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 논문은 불완전한 데이터를 처리하기 위해 본래 규칙개선 문제를 위해 고안되었던 데이터 확장 기법을 사용한다. 이 기법은 사건마다 중요도를 의미하는 가중치를 가질 수 있으며 각 변수를 확률값으로 나타낼 수 있는 특징이 있다. 본 논문에서의 핵심 문제가 손실값과 가장 근사한 확률을 구하여 손실값을 확률로 대치하는 것이므로, 3가지 다른 알고리즘으로 손실값에 대한 확률을 구한 후 이 데이터 구조의 형식으로 저장한다. 그리고 각각의 확률 구조에 대한 평가를 위해 SVM 분류 알고리즘으로 각각의 정보 영역을 분류하는 학습을 한 후, 본래의 정보와 비교하여 얼마나 서로 일치하느냐를 측정한다. 손실값의 대치 확률을 위한 3가지 알고리즘들은 같은 데이터 구조를 사용하고 있으나 접근 방법에서는 서로 다른 특징을 가지고 있어 적용 분야에 따라 다양한 용도로 이용될 수 있기를 기대한다.

목차

등록된 정보가 없습니다.

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0