메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Qinsong Qian (Southeast University) Bowen Ren (Southeast University) Qi Liu (Southeast University) Chengwang Zhan (Southeast University) Weifeng Sun (Southeast University)
저널정보
전력전자학회 JOURNAL OF POWER ELECTRONICS JOURNAL OF POWER ELECTRONICS Vol.19 No.6
발행연도
2019.11
수록면
1,429 - 1,439 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Buck-Boost LLC (BBLLC) converters based on a PWM + phase control strategy are good candidates for high efficiency, high power density and wide input range applications. Nevertheless, they suffer from large computational complexity when it comes to calculating the optimal phase for ZVS of all the switches. In this paper, a method is proposed for a microcontroller unit (MCU) to calculate the optimal phase quickly and accurately. Firstly, a 2-D lookup table of the phase is established with an index of the input voltage and output current. Then, a bilinear interpolation method is applied to improve the accuracy. Meanwhile, simplification of the phase equation is presented to reduce the computational complexity. When compared with conventional curve-fitting and LUT methods, the proposed method makes the best tradeoff among the accuracy of the optimal phase, the computation time and the memory consumption of the MCU. Finally, A 350V-420V input, 24V/30A output experimental prototype is built to verify the proposed method. The efficiency can be improved by 1% when compared with the LUT method, and the computation time can be reduced by 13.5% when compared with the curve-fitting method.

목차

Abstract
I. INTRODUCTION
II. TOPOLOGY DESCRIPTION OF THE BUCK-BOOST LLC CONVERTER
III. VARIETY OF DIFFERENT APPROACHES FOR CALCULATING THE OPTIMAL PHASE
IV. PROPOSED OPERATING PRINCIPLE AND CONTROL STRATEGIES
V. EXPERIMENTAL RESULTS
VI. CONCLUSIONS
REFERENCES

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0