메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이승진 (SK텔레콤)
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제24권 제6호
발행연도
2019.11
수록면
1,024 - 1,034 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
음악에 대한 선호도는 다양한 요소들에 의해 결정되며, 추천의 이유를 보여주는 특성을 발굴하는 것은 음악 추천에 있어 중요하다. 본 논문은 가수 인식 작업을 통해 학습한 모델을 활용하여 다양한 음악적 특성을 반영하는 요소들 중 가수의 목소리 특성을 추출하는 방법을 제안한다. 배경음이 포함된 음원 역시 활용할 수 있지만, 음원에 포함된 배경음은 네트워크가 가수의 목소리를 온전하게 인식하는 것을 방해할 수 있다. 이를 해결하기 위해 본 연구에서는 음원 분리를 통해 배경음을 분리하는 사전 작업을 수행하고자 하며, SiSEC에 등장해 검증된 모델 구조를 활용하여 분리된 보컬로 이루어진 데이터 세트를 생성한다. 최종적으로 분리된 보컬을 활용하여 아티스트의 목소리를 반영하는 음색 기반 음악 특성을 발굴하고자 하며, 배경음이 분리되지 않은 음원을 활용한 기존 방법과의 비교를 통해 음원 분리의 효과를 알아보고자 한다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 제안 방법
Ⅲ. 실험 결과
Ⅳ. 결론
참고문헌 (References)

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-567-000101575