메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김만배 (강원대학교) 최창열 (강원대학교)
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제25권 제2호
발행연도
2020.3
수록면
208 - 217 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
원예작물을 카메라로 촬영하여 병해충의 종류를 판단하려는 연구가 오랫동안 있어왔다. 일반적으로 영역분할로 병해충 영역을 추출하고, 통계적 특징을 추출한 후 다양한 기계학습 기법으로 병해충 종류를 판단한다. 최근에는 딥러닝의 종단간 학습으로 병해충을 판별하는 연구가 많이 진행되고 있다. 영역분할은 조명 등의 주변 환경 변화에 따라 만족스러운 성능이 어렵고, 전체 잎 영상을 사용하는 종단간 신경망은 학습 영상과 실제 영상과의 차이 때문에 실제 적용이 어려운 문제가 있다. 이를 해결하기 위해서 본 논문에서는 수퍼픽셀 및 합성곱신경망을 이용하는 병해충 분류 방법을 제안한다. 실험에서는 PlantVilllage의 사과 병충해 영상들을 이용하여 실험한 결과, 분류정확도는 전체영상과 수퍼픽셀이 각각 (98.29, 92.43)%이고, 다변량 F1-score는 각각 (0.98. 0.93)이다. 제안하는 수퍼픽셀 기법은 성능 측면에서 약간 저하되지만, 현실적으로 실제 환경에서 적용 가능함을 확인하였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 제안 방법
Ⅲ. 합성곱 신경망 모델
Ⅳ. 실험 및 결과 분석
Ⅴ. 결론
참고문헌 (References)

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-567-000512930