메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정의한 (POSTECH) 서영주 (POSTECH) 김동주 (POSTECH)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제25권 제5호(통권 제194호)
발행연도
2020.5
수록면
11 - 18 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 연구는 컨베이어 시스템에서 딥러닝을 이용한 배출구 막힘 판단 기술에 대하여 제안한다. 제안 방법은 산업 현장의 CCTV에서 수집한 영상을 이용하여 배출구 막힘 판단을 위한 다양한 CNN 모델들을 학습시키고, 성능이 가장 좋은 모델을 사용하여 실제 공정에 적용하는 것을 목적으로 한다. CNN 모델로는 잘 알려진 VGGNet, ResNet, DenseNet, 그리고 NASNet을 사용하였으며, 모델 학습과 성능 테스트를 위하여 CCTV에서 수집한 18,000장의 영상을 이용하였다. 다양한 모델에 대한 실험 결과, VGGNet은 99.89%의 정확도와 29.05ms의 처리 시간으로 가장 좋은 성능을 보였으며, 이로부터 배출구 막힘 판단 문제에 VGGNet이 가장 적합함을 확인하였다.

목차

[Abstract]
[요약]
I. Introduction
II. Preliminaries
III. The Proposed Scheme
IV. Experiment
V. Conclusions
REFERENCES

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0