메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Suk-Ho Choi (Sangji University) Myoung Soo Nam (Chungnam National University)
저널정보
충남대학교 농업과학연구소 Korean Journal of Agricultural Science Korean Journal of Agricultural Science Vol.47 No.1
발행연도
2020.3
수록면
67 - 81 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The physicochemical parameters of honey are used to determine the botanic origin of honey and to specify the composition criteria for honey in regulations and standards. The parameters of honeydew and blossom honeys from Korean beekeepers were determined to investigate whether they complied with the composition criteria for honey in the food code legislated by Korean authority and to establish the parameters which should be subjected to principal component analysis for improved differentiation of honeys. The fructose and glucose contents of the honeydew honey did not comply with the composition criteria. The ash content of the honey was closely correlated with CIE a<SUP>*</SUP> and CIE L<SUP>*</SUP> The principal component analysis of fructose to glucose ratio, CIE a<SUP>*</SUP>, CIE L<SUP>*</SUP>, ash content, free acidity, and fructose and glucose contents enabled classification of honeydew, chestnut, multifloral, and acacia honeys. Additional advantage of the principal component analysis (PCA) is that the physicochemical parameters, such as fructose to glucose ratio (F/G) and color, can be determined using the analytical instruments for composition criteria and quality control of honey. This study suggested that composition criteria for honeydew honey should be established in the food code in accordance with international standards. The principal component analysis reported in this study resulted in improved classification of the honeys from Korean beekeepers.

목차

Abstract
Introduction
Materials and Methods
Results and Discussion
References

참고문헌 (26)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-520-000607177