메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
홍성준 (성공회대학교) 이수형 (한국교통대학교) 이희성 (한국교통대학교)
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제69권 제7호
발행연도
2020.7
수록면
1,125 - 1,130 (6page)
DOI
10.5370/KIEE.2020.69.7.1125

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The recognition of a person from his (her) gait has been a recent focus in computer vision because of its unique advantages such as non-invasive and human friendly. Gait recognition, however, has the weakness that it is not reliable compared with other biometrics. In this paper, we applied deep neural network ensemble to the gait recognition problem. The deep neural network ensemble is a learning paradigm where a collection of deep neural networks is trained for the same task. Generally, the ensemble shows better generalization performance than a single deep neural network such as convolution neural network and recurrent neural network. To increase reliability of the gait recognition, gait energy image (GEI) and Motion silhouette image (MSI) are extracted for gait features and convolution and recurrent neural network ensemble are used for classifier. Experiments are performed with the NLPR and SOTON databases to show the efficiency of the proposed algorithm. The performance of proposed method is 4.55%, 4.85%, 2.5% and 2.43% better than single CNN, respectively in two databases. As a result we can create a recognition system with accuracy of 100%, 100%, and 94% in the NLPR database and 97.35% in the SOTON database.

목차

Abstract
1. 서론
2. 걸음걸이 인식
3. 실험
4. 결론
References

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-560-000860332