메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
임윤택 (명지대학교 컴퓨터공학과) 윤충화 (명지대학교 컴퓨터공학과)
저널정보
대한안전경영과학회 대한안전경영과학회 학술대회 대한안전경영과학회 1999년도 추계학술대회
발행연도
1999.1
수록면
209 - 216 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
정보 검색 분야의 문서 분류에 기계 학습 기법을 적용할 때 발생하는 가장 큰 문제는 문서를 패턴으로 표현할 때, 하나의 패턴이 가지는 특징의 수가 기계 학습 기법에서 처리할 수 있는 범위를 넘어서는 것이다. 이러한 문제를 해결하기 위하여 특징 선택 기법은 패턴을 구성하고 있는 특징 중에서 실제 문서 분류에 많은 영향을 주는 특징만을 선택하여, 기계 학습 기법에서 쉽게 처리할 수 있을 정도의 패턴을 구성하게 한다. 본 논문에서는 이러한 특징 선택 기법 중에서 IG(Information Gain), Gini index, Relief-F, DF(Document Frequency)를 비교하였다. 실험 결과 문서들에 포함된 모든 고유 단어를 특징의 길이로 하여 패턴을 구성했을 때보다 특징 선택 기법을 적용하여 고유 단어 중 일부를 특징으로 패턴을 구성할 때 기계학습에서 더 향상된 분류 성능을 보였다

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0