메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
김진영 (전북대학교 공과대학 토목공학과) 소병진 (전북대학교 공과대학 토목공학과) 권덕순 ([주]이산) 권현한 (전북대학교 공과대학 토목공학과)
저널정보
한국수자원학회 한국수자원학회 학술발표회 한국수자원학회 2016년도 학술발표회
발행연도
2016.1
수록면
229 - 229 (1page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (4)

초록· 키워드

오류제보하기
현재 국내외에서 제공되고 있는 기후변화 시나리오 자료의 경우 일단위로 제공되고 있다. 그러나 수자원 설계 및 계획 시 중요한 입력자료 중 하나는 시간단위 강우 자료이다. 이러한 시간단위 자료는 강우-유추 분석, 댐 설계 및 위험도 분석에 있어 중요한 입력 변수중 하나이므로 기후변화 시나리오에 따른 영향을 평가하기 위해선 신뢰성 있는 상세화 기법이 필요하다. 국내외에서는 일단위에서 일단위로 상세화 하는 기법, 또는 공간상세화 기법 연구는 상당히 진행된바 있는 반면, 시간단위 상세화 기법 연구는 일단위 연구에 비해 상대적으로 미진한 실정이다. 즉 일단위 상세화 기법의 경우 Weather generator, Weather typing 등 다양한 기법이 존재하고 이를 활용한 연구사례가 많지만, 시간단위 상세화 기법의 Poisson 기법을 활용한 사례가 다수 존재하였다. 이러한 이유로 본 연구에서는 기후변화 시나리오에 따른 영향을 평가하기 위해 Bayesian 기법을 도입하여 신뢰성 있는 시간단위 강우량을 생성할 수 있는 모형을 개발하였으며, 연대별로 산정된 결과는 빈도해석을 통해 미래 확률강우량을 제시하였다. 본 연구에서 제안하고자 하는 Bayesian Copula 모형은 기존 주변확률분포(marginal distribution) 매개변수와 Copula 매개변수 추정시 각각 다른 기법을 활용하여 추정하며, 각각 모형에서 발생하는 불확실성은 추정하지 못하는 반면, Bayesian Copula 모형의 경우 매개변수의 사후분포를 정량적으로 제시할 수 있으며, 추정되는 확률강우량 역시 불확실성을 정량적으로 산정할 수 있는 장점을 확인할 수 있었다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0